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Transient regime duration in continuous-time neural networks with delay
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Finite transmission times between neurons, referred to as delays, appear in hardware implementation of
neural networks and may interfere with information processing by inducing oscillations. In some networks
these oscillations are transients. In this work, we examine these in a two-neuron network, and we show
analytically that the duration of such transients increases exponentially with the delay.
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Hopfield @1# showed that networks of graded-respon
continuous-time neurons~GRCTNs! could be used for task
such as content addressable memories, in the same wa
networks of two-state discrete-time units. One of the mo
vations behind his study was that the former can be ea
implemented in hardware. His analysis relied on describ
the dynamics of a network composed of GRCTNs by a s
tem of differential equations admitting a Lyapunov functio
This ensured that no matter how the network was initializ
it eventually stabilized in a steady state representing the
trieved information. Hopfield recognized that, in his form
lation, he neglected the finite propagation velocities that
pear in electrical circuits, and argued that as long as
resulting transmission delays remain small compared to o
characteristic time scales of the network, the electrical circ
should behave as predicted by the theoretical model.

This claim has been the starting point of a number
studies@2# aiming to determine whether finite propagatio
times and the ensuing transmission delays do indeed a
the dynamics of graded-response neural networks define

dxi

dt
~ t !52g ixi~ t !1Ki1(

j 51

N

Wi j s i j „xj~ t2Ai j !…, ~1!

where xi is the activation of thei th neuron, and 1/g i its
characteristic charge-discharge time,Ki is the input to the
unit i ,Wi j is the connection weight between unitsj andi , Ai j
is the transmission delay between these two units, ands i j are
sigmoidal functions.

The aforementioned studies mainly focus on t
asymptotic dynamics of the system with delay. Some de
sufficient conditions to avoid delay-induced oscillations
otherwise convergent networks, in other words, they prov
constraints on parameter ranges, such as connection we
neuron gains, and delays that ensure that the system
delay has the same stable equilibria as the one without de
and that most solutions eventually stabilize at these equ
ria.

Numerical investigations indicate that even when prec
tions are taken to avoid delay-induced instabilities, osci
tions may arise in the presence of delays. These are de
induced transient oscillations~DITOs!, and cannot be
predicted by the analysis of the asymptotic dynamics of n
ral networks. Examples of DITOs were first reported in tw
PRE 581063-651X/98/58~3!/3623~5!/$15.00
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mutually exciting neurons and in rings@3#, but, to our knowl-
edge, no analysis of this phenomenon has been carried
In our previous work, we observed that when DITOs appe
the duration of the transients, that is, the time required for
system to stabilize at an equilibrium, increases as the c
acteristic charge-discharge time of the neurons tends to z
or, equivalently, as the delay is increased@4#. In fact, DITOs
can last so long that for practical purposes they are indis
guishable from sustained oscillations. Therefore, understa
ing the origin of DITOs in neural networks constitutes
important complement to the analysis of delay induced ins
bilities in order to avoid long lasting oscillations that det
riorate network performance.

We attributed the presence of DITOs to the fact that
lutions of Eq.~1! transiently follow those of the differenc
system defined as

xi~ t !5
1

g i
FKi1(

j 51

N

Wi j s i j „xj~ t2Ai j !…G . ~2!

System~2! can display attracting oscillations even when
most all solutions of the corresponding delay equation~1! are
convergent. The fact that some solutions display trans
oscillations before stabilizing at equilibrium is the result
the difference between the asymptotic dynamics of Eqs.~1!
and ~2!.

We also computed the transient regime duration~TRD!
and we observed that it increased exponentially with the
lay. However, no detailed study of this phenomenon w
carried out beyond the numerical evidence that we provid
The main purpose of this work is to confirm the numeric
results through the analytical calculation of the TRD. To th
end, we examine the dynamics of the following two-neur
network:

dx

dt
~ t !52x~ t !1Ws`„y~ t2A!…,

~3!
dy

dt
~ t !52y~ t !1Ws`„x~ t2A!…,

wheres` is the step function, i.e.,s`(x)51 if x.0, and
21 otherwise. We show that the dynamics of system~3! can
be understood in terms of the iterations of a one-dimensio
3623 © 1998 The American Physical Society
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map. We first provide a geometrical description of the co
struction of this map, and then we announce the genera
sults.

Assuming that the delayA is set to zero, system~3! de-
fines a two-dimensional ordinary differential equation, t
trajectories of which in the (x,y) plane are easily con
structed. We denote byr 152(W,W), r 25(0,0), r 3

5(W,W), r 185(2W,W), and r 385(W,2W). r 1 and r 3 are
the stable equilibria of the system to which most trajector
converge. Trajectories of initial conditions (u,v) with u.0
and v.0 are the segments of the straight lines connec
the initial point tor 3 . An example of such a trajectory in th
two-dimensional phase space is presented in Fig. 1~a!. For an
initial condition (u,v) with 0<2u,v, the trajectory coin-
cides first with the straight line connecting the initial point
r 38 , until reaching they axis, that is, as long asx(t),0.
From this point on, the trajectory is the segment connec
the intersection point with they axis to the equilibrium point
r 3 . Thus, such trajectories are broken lines. One examp
shown in Fig. 1~a!. The trajectories of other initial condition
can be constructed in the same way.

In the following, we will mainly concentrate on the influ
ence of delays on the trajectories of initial conditions sa
fying either u.0 and v.0 or 0<2u,v. These two re-
gions of initial conditions are referred to as regions I and
respectively. Trajectories of other initial conditions can
derived from these through symmetry considerations.

Since the input-output function of the neurons is a s
function, delays do not alter the trajectories of initial con
tions in I. These are the same as for the delay-less sys
that is, segments connecting the initial condition tor 3 , as
exemplified in Fig. 1~b!. The situation is different for initial

FIG. 1. Schematic construction of the mapf . ~a! for delay A
50, ~b!, ~c!, and~d! for delayA.0. See text for details.
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conditions in II. In the case without delay, the effect of t
sign change inx appeared instantaneously, as the traject
switched to the straight line connectingr 3 right upon cross-
ing the y axis. When interunit transmission is not instant
neous, this effect is delayed, that is, the trajectory contin
along the same straight line towards the pointr 38 , during a
time interval equal to the delayA, before switching to the
segment that takes it towards the pointr 3 @Fig. 1~b!#. For all
trajectories starting in region II, the break points have e
actly the same abscissae. Thus, there is a critical value ov,
denotedv1 , such that the break point is exactly on thex axis
@Fig. 1~b!#. This point plays an important role, as all initia
conditions in II whose trajectories crosses they axis above
v1 reach the stable pointr 3 after exactlyone break point,
such as the one shown in the figure. Trajectories of ot
initial conditions will display two or more break points be
cause they enter the region wherey,0, that is, at some
point, the second variable changes sign. This sign cha
will affect the trajectory after a time delay, and provoke
second break point, where the trajectory switches to
straight line leading towardsr 18 . Other break points follow
this, so that eventually the broken line representing the
jectory will end up at the equilibrium pointr 3 . An example
of a trajectory with three break points is shown in Fig. 1~c!.

Our analysis hinges upon the construction of a map t
describes the trajectories after the second break point. Le
first note that the break points and the trajectories of ini
conditions in II are entirely determined by the ordinatev at
which the trajectory first intersects they axis. So that in the
following we only take this value into consideration. The
for a given valuev the construction of the map relies on th
observation that we can find a point on thex axis, denoted
f (v) in Fig. 1~c!, whose trajectory coincides exactly wit
that of the original initial conditionafter the second break
point. Geometrically, this point is easily obtained as the
tersection point between thex axis and the straight line con
nectingr 18 to the second break point of the trajectory. Than
to this simple geometrical construction, we obtainf (v) ana-
lytically as

f ~v !5
W~21e2A!v

2W2~v1W!e2A . ~4!

Once the point„f (v),0… on thex axis is determined, we can
reiterate the same analysis and construction assuming
the initial condition is in fact this new point. Thus, we ca
easily see that iff (v).v1 , the trajectory will have only one
more break point before tending to the equilibrium pointr 3
along a straight line. This situation is represented in the F
1~c!. Conversely, whenf (v),v1 , the trajectory will have at
least two more break points, since it will cross they axis
again. For such points, we can construct a point (0,s) on the
y axis such that the trajectory after the second break po
i.e., the fourth break point along the trajectory starting fro
the initial condition, coincides with that of (0,s). Thanks to
the symmetries of the system, we haves5 f „f (v)…5 f 2(v).
If f 2(v).v1 , we stop the process because after the fi
break point, the trajectory will converge to the stable eq
librium point along a straight line, otherwise, we continue
iteratef until there isn such thatf n(v).v1 @Fig. 1~d!#. Such
a value ofn exists becausef (v).v for all v.0. Figure 2
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PRE 58 3625TRANSIENT REGIME DURATION IN CONTINUOUS- . . .
shows an example of the functionf and the cobweb con
struction of the sequence of pointsf n(v), until it becomes
larger thanv1 .

We can formalize the above construction as follows:
Theorem.For r 5(u,v)PR2, such thatv.2u>0, let

V(r )5W(v1u)/(W2u) and n be the integer such tha
f n21

„V(r )…,v1< f n
„V(r )…, where v15W(eA21). Then,

there existT>nA, and u.0 such that fort>T, z(t,r )
5z(t2u,r n), wherez(t,j) is the solution of Eq.~3! through
the initial conditionj (j5r or r n), and r n represents the
point @0,f n

„V(r )…# on they axis, for n even, and the poin
@ f n

„V(r )…,0# on thex axis for n odd.
Our interest is in the transient oscillations of the solutio

and the incidence of these on the TRD, that is, the tim
takes the trajectory to reach a small neighborhood of
equilibrium point. Usingf and its iterates we can characte
ize both aspects of the dynamics of the system.

Oscillations for a system like Eq.~3! can be defined as
points where either one of the variablesx or y take the value
zero, in other words, a solution oscillates as long as there
times t such thatx(t)3y(t)50. We refer to such points a
the zeros of the solution, and we denote byN(r ,A) the num-
ber of zeros of the solution of Eq.~3!, with delayA, going
through the initial conditionr . The larger the value ofN,
and the more the solution oscillates. The following res
shows that solutions of initial conditionsr 5(u,v) in region
II close to the straight lineu1v50 can display arbitrarily
large numbers of zeros:

Transient oscillations.Let vn5 f 2n(v1), then

vn5
2W~22e2A!n~eA21!

2~21e2A!n1@~21e2A!n2~22e2A!n#~eA21!
.

We havev1(A).v2(A).¯.vk(A).¯.0, andvn tends
to zero asn→`.

For r 5(u,v)PR2, with 0<2u,v, we haveN(r ,A)
51,2p and 2p11 (p>1) for v.v12(11v1 /W)u, v
5vp2(11vp /W)u and vp112@11(vp11)/W#u,v,vp
2(11vp /W)u, respectively.

The number of zeros of a solution informs us about
TRD, because successive zeros cannot be arbitrarily clos

FIG. 2. Example of the mapf . The solid line is the graph of the
function f , the horizontal line is atv1 . The cobweb construction
shows the successive iteratesf (V), f 2(V)5 f „f (V)…,...,f k(V) with
V55, until they become larger thanv1 . Parameters:W53, A54.
Abscissae and ordinates are in arbitrary units.
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one another, and as long as the solution is oscillating, i
obviously not stabilizing at the equilibrium point. Thus, an
measure of the length of transient oscillations provide
lower bound for the TRD. We have the following result:

Transient regime duration.We denote by T(r ,A)
the transient regime duration of a solution of Eq.~3!, with
delay A, going through the initial conditionr 5(u,v)
PR2, with 0<2u,v. Then, T(r ,A)>pA for vp112@1
1(vp11)/W#u,v<vp2(11vp /W)u.

This result indicates that for fixed delayA, the TRD
grows indefinitely as initial conditions get closer to the lin
u1v50. Figure 3~a! shows the TRD as a function of th
ordinatev for initial conditions (21023,v). The TRD in-
creases abruptly asv approaches 1023. The inset shows a
magnification forv ranging from 20 to 50. The humps in th
inset correspond to the changes in the number of zero
solutions.

All the previous analyses were carried out for a syst
with fixed delay values. Our main concern is to see how
results are modified when the delay is increased. This is d
in the following. The main result stems from the fact that t
valuesvn(A) of the bounds delimiting the regions with
given number of zeros, and hence with a given range
TRD, increase exponentially with the delay.

Transient oscillations with the delay.For a fixed initial
condition r 5(u,v) with 0<2u,v, there is a strictly in-
creasing sequence 0,A1,A2,¯,Ak,¯ , such that
z(t,r ), the solution of Eq.~3!, with delayA, going through
r , displays exactly 1, 2p, or 2p11 zero~s! for A,A1 , A
5Ap , or Ap,A,Ap11 , respectively. In other words
N(r ,A)51, 2p, and 2p11 for A,A1 , A5Ap , andAp,A
,Ap11 , respectively.

Thus, for fixedr , N(r ,A) and consequentlyT(r ,A) are
increasing functions ofA, when A is large enough. The
speed with which these quantities increase can then be d
mined by remarking thatvn(A);2WeA/(n12) as A→`,
and using the lower bound on the TRD provided above.

Exponential increase of transient regime duration.Let r
5(u,v)PR2, with 0<2u,v, and let p5@2WeA/(W
1V)#21 where the brackets indicate the integer part, a
V5W(u1v)/(W2u). Then, we haveT(r ,A)>pA, as A
→`, or T(r ,A)>2WAeA/(W1V).

The thick solid line in Fig. 3~b! shows the delayA versus
the TRD plotted in a logarithmic scale for a fixed initia
condition r 5(21023,5). It can be seen that as the delay
increased, the TRD increases linearly with the delayA, con-
firming our analytical results. This is in good agreement w
the thin solid line, which shows the analytical lower bou
for the TRD.

All the analysis and results presented until this point w
carried out for a steplike input-output functions` . This as-
sumption allowed us to carry a detailed analytical descript
of the system dynamics. Numerical investigations show t
similar results hold for the system

dx

dt
~ t !52x~ t !1Wsa„y~ t2A!…,

~5!

dy

dt
~ t !52y~ t !1Wsa„x~ t2A!…,
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where the input-output functions of the units are smo
functionssa(x)5tanh(ax). The asymptotic dynamics of Eq
~5! has been described in@5#. In the following, we remind the
results essential for our study.

Theorem.~i! When 0,aW<1, the origin is a globally

FIG. 3. Transient regime duration.~a! Transient regime duration
for a delayA54 for initial conditions (u,v) with u521023, andv
ranging from 0.5 to 50. The inset shows a magnification of
graph forv in @20,50#. Abscissae: ordinatev of the initial condition,
in arbitrary units; ordinates: transient regime duration in arbitr
units. ~b! Delay vs the transient regime duration for the initial co
dition (u,v)5(21023,5), for stepwise~thick solid line! and two
smooth input-output functions with gaina550 ~thick dashed line!
and a510 ~thin dashed line!. The thin solid line is the analytica
lower bound~see text for details!. Abscissae: delay in arbitrary
units; ordinates: transient regime duration in logarithmic scale
arbitrary units.~c! Same as inA for smooth input-output functions
with gainsa550 ~thick dashed line! anda510 ~thin dashed line!.
Weight W53 in all figures.
h

asymptotically stable equilibrium point of system~5!.
~ii a! When aW.1, system~5! has three equilibrium

points denotedr 15(2a,2a), r 25(0,0), and r 35(a,a),
wherea is the unique strictly positive real number satisfyin
a5Wsa(a). The pointsr 1 andr 3 are locally asymptotically
stable, whiler 2 is unstable.

~ii b! The union of the basins of attraction ofr 1 and r 3
contains an open dense subset of the phase space.

~ii c! The complement of the union of the basins of attra
tion of the two stable equilibria, denotedB, is the boundary
separating the two basins.

~ii d! B is a codimension-one locally Lipschitz manifol
containing the unstable equilibrium pointr 250 and its stable
manifold. It divides the phase space into two regions in
same way a plane divides a three-dimensional space: P
‘‘below’’ and ‘‘above’’ B form the basins of attraction ofr 1
and r 3 , respectively.

The above result shows that no matter what value
delayA takes, most solutions of Eq.~5! tend to an equilib-
rium point. Those that are not convergent can only be c
tained in the narrow region forming the boundary separat
the basins of attraction of the two stable equilibria wh
aW.1. Therefore, the presence of delays does not alter
asymptotic dynamics of most trajectories of Eq.~5!. How-
ever, foraW.1, due to the presence of attracting period
solutions of the difference system associated with Eq.~5!,
transient oscillations appear. The increases in the TRD
to the onset of these transient oscillations can be seen in
3~c!, for a fixed delay value, as the initial condition
changed, and the two dashed lines in Fig. 3~b! for a fixed
initial condition, as the delay is changed. The results
similar to the case with the steplike input-output functio
They also show that the TRD increases more rapidly
largea, the fastest increase being the one computed for
step input output function.

One key aspect in our analysis was the description of
dynamics of the two-neuron network with piecewise const
input-output functions and delayed interactions by the ite
tions of simple one-dimensional maps. Similar maps, alb
of appropriate dimension, can be constructed for netwo
composed ofN units.

Assumptions for the existence of transient oscillations
that ~i! the network with delay is almost convergent for a
delays, and~ii ! the associated discrete time network displa
an attracting periodic orbit. Let us denote byp1 ,...,pk the
successive points of this periodic orbit. Eachpi belongs to a
given orthant, denoted byOi , of the N-dimensional space
Transient oscillations arise when trajectories of t
continuous-time system with delay follow for some time th
periodic orbit, and the construction of the map is based u
this property. This construction is schematically described
the following.

Trajectories starting inOi are segments of straight line
that connect the initial conditions topi 11 ~where pk11
5p1). These trajectories leaveOi through part of its bound-
ary that we denote byBi . For example, for the two-neuro
network we studied, there is a period-two orbit, withp1
5(2W,W) andp25(W,2W). The corresponding orthant
and boundaries are, respectively,O15$(u,v):u,0,v.0%,
O25$(u,v):u.0,v,0%, and B15$(0,v):v.0%ø$(u,0):u
,0%, B25$(0,v):v,0%ø$(u,0):u.0%. Each Bi can be

e

y
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partitioned into two subsets, denoted byCi and Di , where
trajectories starting inCi enterOi 11 while those starting in
Di do not. In the case of the two-neuron network, we ha
C15$(0,v):0,v,v1%ø$(u,0):2v1,u,0% and D15B1
2C1 , while C2 andD2 are defined in a similar way. We ca
construct a mapf i that associates a pointz8 in Bi 11 to a
point z in Ci , such that the trajectories of the two poin
coincide after some appropriate time. Th
(N21)-dimensional map generalizes the one used for
analysis of the two-neuron network. Its construction follo
the same line.

Trajectories starting inCi enterOi 11 after possibly going
through a number of other orthants. These translate in
number of break points along the trajectory, before it join
straight line leading topi 12 ( i 12 taken modulok). The
point z85 f i(z) is the intersection between this line and t
boundaryBi 11 . If z8 is in Ci 11 , the process can be contin
ued to obtain a pointz9 in Bi 12 , otherwise, it stops. There
fore, in principle, it is possible to analyze the transient d
namics of anN-neuron network with delay through th
composition of appropriate (N21)-dimensional mapsf i , in
the same way as for the two-neuron network.

The above construction generalizes the one in@6#, intro-
duced for the study of some oscillating solutions of netwo
composed of units with piecewise constant input-out
functions with instantaneous transmission times@7,8#. It can
be shown that the hypotheses in@6# imply the existence of an
attracting periodic orbitp1 ,...,pk for the associated discrete
time neural network, so that the corresponding Poincare´ map
is one special form of the map depicted in the previous pa
graph. However, important conditions for the application
the results in@6# are that~i! the orthantsOi and Oi 11 be
.

.

-
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lt,
e

e

a
a

-

s
t

a-
f

adjacent,~ii ! trajectories initiated in the boundaries separ
ing Oi from any neighboring orthant, except forOi 11 , enter
Oi . This simplifies the construction of the map, even wh
interactions are delayed. Indeed, in this case, intermed
break points do not occur along trajectories, nor do orth
boundaries need to be subdivided. Furthermore, as we h
shown through the study of a two-neuron network with d
layed negative feedback@9# satisfying the above condition
@7#, they imply that, regardless of the fact that the netwo
without delay is convergent or not, the introduction of dela
leads tosustainedstable oscillations in such networks. Thu
they are subject to delay-induced loss of stability and do
satisfy our first assumption for the existence of dela
induced transient oscillations, namely, that delays be ha
less for the asymptotic dynamics.

In conclusion, through our analytical study we have co
firmed the fact that, due to the presence of DITOs, the tr
sient regime duration of neural networks increases expon
tially with the delay, even when the delay does not affect
asymptotic behavior of most trajectories. The DITOs are d
to the fact that the solutions of Eq.~1! are transiently at-
tracted by oscillating solutions of the associated differen
system~2!. Thus, even though the asymptotic dynamics o
network of GRCTNs is not affected by the delay, its info
mation retrieval performance may deteriorate due to the
TOs that can cause a considerable lengthening of the t
sient regime duration.
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