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Transient regime duration in continuous-time neural networks with delay
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Finite transmission times between neurons, referred to as delays, appear in hardware implementation of
neural networks and may interfere with information processing by inducing oscillations. In some networks
these oscillations are transients. In this work, we examine these in a two-neuron network, and we show
analytically that the duration of such transients increases exponentially with the delay.
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Hopfield [1] showed that networks of graded-responsemutually exciting neurons and in ring3], but, to our knowl-
continuous-time neuron&SRCTNSg could be used for tasks edge, no analysis of this phenomenon has been carried out.
such as content addressable memories, in the same way lasour previous work, we observed that when DITOs appear,
networks of two-state discrete-time units. One of the moti-the duration of the transients, that is, the time required for the
vations behind his study was that the former can be easilgystem to stabilize at an equilibrium, increases as the char-
implemented in hardware. His analysis relied on describingcteristic charge-discharge time of the neurons tends to zero,
the dynamics of a network composed of GRCTNs by a syser, equivalently, as the delay is increagddl In fact, DITOs
tem of differential equations admitting a Lyapunov function. can last so long that for practical purposes they are indistin-
This ensured that no matter how the network was initializedguishable from sustained oscillations. Therefore, understand-
it eventually stabilized in a steady state representing the rang the origin of DITOs in neural networks constitutes an
trieved information. Hopfield recognized that, in his formu- important complement to the analysis of delay induced insta-
lation, he neglected the finite propagation velocities that apbilities in order to avoid long lasting oscillations that dete-
pear in electrical circuits, and argued that as long as theorate network performance.
resulting transmission delays remain small compared to other We attributed the presence of DITOs to the fact that so-
characteristic time scales of the network, the electrical circuitutions of Eq.(1) transiently follow those of the difference

should behave as predicted by the theoretical model. system defined as
This claim has been the starting point of a number of L N
studies[2] aiming to determine whether finite propagation e = e vt AL
times and the ensuing transmission delays do indeed affect xi(1)= Vi K'+J-21 Wij iy (X (1= A)) | )

the dynamics of graded-response neural networks defined by ) _ -
System(2) can display attracting oscillations even when al-

dx; most all solutions of the corresponding delay equatijrare
V= —YiXi(t)+Ki+Zl Wjoij(x;(t—=Aj;)), (1)  convergent. The fact that some solutions display transient
1= oscillations before stabilizing at equilibrium is the result of
the difference between the asymptotic dynamics of Eds.
and(2).
We also computed the transient regime durafi®RD)

and we observed that it increased exponentially with the de-
lay. However, no detailed study of this phenomenon was
carried out beyond the numerical evidence that we provided.

N

where x; is the activation of thdth neuron, and 3/ its
characteristic charge-discharge timk€, is the input to the
uniti,W;; is the connection weight between unjtandi, A;;
is the transmission delay between these two units ;gpdre
sigmoidal functions.

The aforementioned studies mainly focus on the

asymptotic dynamics of the system with delay. Some derivérhe main purpose of this work is to confirm the numerical

sufficient conditions to avoid delay-induced oscillations inreSUItS through the analytical calculation of the TRD. To this

otherwise convergent networks, in other words, they provideend’ we examine the dynamics of the following two-neuron

constraints on parameter ranges, such as connection weighpse,twork'

neuron gains, and delays that ensure that the system with dx

delay has the same stable equilibria as the one without delay, G (O=—x1v +Wo.(y(t—A)),
and that most solutions eventually stabilize at these equilib-

ria.

Numerical investigations indicate that even when precau- d_y —_ _
tions are taken to avoid delay-induced instabilities, oscilla- dt ®) YO+ Wo(x(t=A),
tions may arise in the presence of delays. These are delay-
induced transient oscillationgDITOs), and cannot be whereo,, is the step function, i.eg.(x)=1 if x>0, and
predicted by the analysis of the asymptotic dynamics of neu— 1 otherwise. We show that the dynamics of syst8jrcan
ral networks. Examples of DITOs were first reported in twobe understood in terms of the iterations of a one-dimensional

()
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x+y=0 y X+y=0 y conditions in Il. In the case without delay, the effect of the
S \ . sign change inx appeared instantaneously, as the trajectory
r’T\\W Ty r’,-\\ \W;;;ﬁ 1 switched to the straight line connecting right upon cross-
N P \\\\\ // ing they axis. When interunit transmission is not instanta-
w N\~ NN neous, this effect is delayed, that is, the trajectory continues
g W % ; w  x along the same straight line towards the paifif during a
\ \;;;\ time interval equal to the delas, before switching to the
[ i s G Y p segment that takes it towards the paigfFig. 1(b)]. For all
1 w \\ n -w 3 - . . . . K
N \ trajectories starting in region I, the break points have ex-
actly the same abscissae. Thus, there is a critical valwe of
() ®) de_noted;l, su_ch th_at the break point is exactly on bhaxig_
[Fig. 1(b)]. This point plays an important role, as all initial
conditions in Il whose trajectories crosses thexis above
xy=0 y x4y=0 y v, reach the stable point_3 after gxactlyong break point,
N such as the one shown in the figure. Trajectories of other
Pl Wi AT r’\l\ . AU 215 initial conditions will display two or more break points be-

N s fz(v)\yx cause they enter the region wheye<0, that is, at some
w V‘\\ \j\f(v) "< \ £v) point, the second variable changes sign. This sign change

! Y vw o x W : N will affect the trajectory after a time delay, and provoke a
\ fov)+ N, second break point, where the trajectory switches to the
L s L N straight line leading towards; . Other break points follow

n ) o w \ this, so that eventually the broken line representing the tra-

jectory will end up at the equilibrium point;. An example
of a trajectory with three break points is shown in Fi¢c)1

© @ Our analysis hinges upon the construction of a map that
FIG. 1. Schematic construction of the mép () for delayA  describes the trajectories after the second break point. Let us
=0, (b), (c), and(d) for delayA>0. See text for detalils. first note that the break points and the trajectories of initial

conditions in Il are entirely determined by the ordinatat

f id ical d - fth which the trajectory first intersects tlyeaxis. So that in the
map. We first provide a geometrical description of the Con+q)ioying we only take this value into consideration. Then,

struction of this map, and then we announce the general 1§y 4 given value the construction of the map relies on the
sults. _ observation that we can find a point on theaxis, denoted

_ Assuming that the delag is set to zero, syster8) de-  f(;) in Fig. 1(c), whose trajectory coincides exactly with
fines a two-dimensional ordinary differential equation, theinat of the original initial conditiorafter the second break
trajectories of which in the X(y) plane are easily con- ngint. Geometrically, this point is easily obtained as the in-
structed. V}/e denote byrlz,—(W,V\/), r2=(0,0), Ts  tersection point between theaxis and the straight line con-
=(W,W), ri=(=W,W), andrz=(W,-W). ry andrs are  pectingr/ to the second break point of the trajectory. Thanks

the stable equilibria of the system to which most trajectories, this simple geometrical construction, we obtéfn) ana-
converge. Trajectories of initial conditions,p) with u>0 lytically as

andv>0 are the segments of the straight lines connecting
the initial point tor;. An example of such a trajectory in the W(2+e Mo
two-dimensional phase space is presented in Ka. Eor an fv)= 2W—(v+W)e A’ )
initial condition (u,v) with 0<—u<uv, the trajectory coin-
cides first with the straight line connecting the initial point to Once the poin{f(v),0) on thex axis is determined, we can
rs, until reaching they axis, that is, as long ag(t)<0. reiterate the same analysis and construction assuming that
From this point on, the trajectory is the segment connectinghe initial condition is in fact this new point. Thus, we can
the intersection point with the axis to the equilibrium point  €asily see that if (v)>v, the trajectory will have only one
r. Thus, such trajectories are broken lines. One example igore break point before tending to the equilibrium paigt
shown in Fig. 1a). The trajectories of other initial conditions along a straight line. This situation is represented in the Fig.
can be constructed in the same way. 1(c). Conversely, wherii(v)<v, the trajectory will have at
In the following, we will mainly concentrate on the influ- least two more break points, since it will cross theaxis
ence of delays on the trajectories of initial conditions satis-again. For such points, we can construct a poing)(0n the
fying eitheru>0 andv>0 or O<—u<v. These two re- Yy axis such that the trajectory after the second break point,
gions of initial conditions are referred to as regions | and Il,i.e., the fourth break point along the trajectory starting from
respectively. Trajectories of other initial conditions can bethe initial condition, coincides with that of (€),. Thanks to
derived from these through symmetry considerations. the symmetries of the system, we hasre f(f(v))=1?(v).
Since the input-output function of the neurons is a stepf f2(v)>v,, we stop the process because after the fifth
function, delays do not alter the trajectories of initial condi-break point, the trajectory will converge to the stable equi-
tions in I. These are the same as for the delay-less systeribrium point along a straight line, otherwise, we continue to
that is, segments connecting the initial conditionrtg as iteratef until there isn such that"(v)>wv, [Fig. 1(d)]. Such
exemplified in Fig. 1b). The situation is different for initial a value ofn exists becausé(v)>wv for all v>0. Figure 2
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obviously not stabilizing at the equilibrium point. Thus, any
measure of the length of transient oscillations provides a
150 | 1 lower bound for the TRD. We have the following result:

Transient regime duration.We denote by T(r,A)
the transient regime duration of a solution of Eg), with
delay A, going through the initial conditionr=(u,v)
eR?, with 0<—u<v. Then, T(r,A)=pA for v,.;—[1
+ (v )/ Wu<vsv,—(1+v,/W)u.
50t T This result indicates that for fixed dela%, the TRD
grows indefinitely as initial conditions get closer to the line
u+v=0. Figure 3a) shows the TRD as a function of the
o = pres oS 200 ordinatev for initial conditions (10 3,v). The TRD in-

v creases abruptly as approaches IC°. The inset shows a
magnification forv ranging from 20 to 50. The humps in the
inset correspond to the changes in the number of zeros of
solutions.

All the previous analyses were carried out for a system
with fixed delay values. Our main concern is to see how the
results are modified when the delay is increased. This is done
in the following. The main result stems from the fact that the
valuesv,(A) of the bounds delimiting the regions with a
given number of zeros, and hence with a given range of
TRD, increase exponentially with the delay.

Transient oscillations with the delayror a fixed initial
conditionr=(u,v) with 0<—u<uv, there is a strictly in-
creasing sequence <0A;<A,<---<A,<---, such that
z(t,r), the solution of Eq(3), with delayA, going through
r, displays exactly 1, @, or 2p+1 zerds) for A<A;, A
=A,, or A,<A<A,,;, respectively. In other words:
N(r,A)=1, 2p, and +1 for A<A;, A=A, andA,<A
Ap+1, respectively.

Thus, for fixedr, N(r,A) and consequentlyf(r,A) are
ncreasing functions ofA, when A is large enough. The
peed with which these quantities increase can then be deter-
mined by remarking thab,(A)~2We*/(n+2) asA—x,

200 : - / " one another, and as long as the solution is oscillating, it is

1V
g

FIG. 2. Example of the map. The solid line is the graph of the
function f, the horizontal line is ab,. The cobweb construction
shows the successive iteratgd/),f2(V) =f(f(V)),...,f(V) with
V=5, until they become larger than, . ParametersW=3, A=4.
Abscissae and ordinates are in arbitrary units.

shows an example of the functidnand the cobweb con-
struction of the sequence of point8(v), until it becomes
larger thanv .

We can formalize the above construction as follows:
Theorem.For r=(u,v) € R?, such thatv>—u=0, let
V(r)=W(v+u)/(W—u) and n be the integer such that
V() <v,<f"(V(r)), where v;=W(e*—1). Then,

there existT=nA, and 6>0 such that fort=T, z(t,r)
=z(t—0,r,), wherez(t,¢) is the solution of Eq(3) through
the initial condition¢ (¢=r or r,), andr, represents the
point [0,f"(V(r))] on they axis, forn even, and the point
[f"(V(r)),0] on thex axis forn odd. <
Our interest is in the transient oscillations of the solutions,
and the incidence of these on the TRD, that is, the time i‘
takes the trajectory to reach a small neighborhood of th
equilibrium point. Usingf and its iterates we can character-

'Zegggm;isgr?;t% rOfa”;eS?anam('gsEoés'f)hecjgsgeerg‘eﬁne d as and using the lower bound on the TRD provided above.
Y Exponential increase of transient regime duratiduwet r

points where either one of the variablesr y take the value _ (Uv)eR2, with 0=—u<p, and let p=[2WeM(W
f;rgéLnSOtgﬁ rtr\:\:aobr:(jf)'; s((il)u_tlgn\(/)ngllléa:ct:rstzlsslo;? a;:]rtlgraetsar V)]—1 where the brackets indicate the integer part, and
: u Yy =0 uch pol V=W(u+v)/(W—u). Then, we havel(r,A)=pA, asA

the zeros of the solution, and we denoteNiyr,A) the num- oo, OF T(r,A)=2WAE/ (W V)

ber of zeros of the solution of E¢3), with delayA, going T,he thick, solid line in Fig. &) éhows the delayA versus

through the initial condl'qorr. The larger the valu_e oN, the TRD plotted in a logarithmic scale for a fixed initial
and the more the solution oscillates. The following result - — 3 .

: L o ) . conditionr=(—10"",5). It can be seen that as the delay is
shows that SOIUUOUS of !nmal condltlorrs(u,v) In region increased, the TRD increases linearly with the d&layxon-
:Lr(;gsﬁuxbtgri ztfrzlggtsl.lnerv =0 can display arbitrarily firming our analytical results. This is in good agreement with

. L eon the thin solid line, which shows the analytical lower bound
Transient oscillationsLet v,=f~"(v4), then for the TRD.
AN A All the analysis and results presented until this point were
- 2W(2—e He"—1) carried out for a steplike input-output functien, . This as-
22+e H"+[(2+e "= (2-e"MH"(e"-1)° sumption allowed us to carry a detailed analytical description
of the system dynamics. Numerical investigations show that
We havev(A)>v,(A)>--->v(A)>--->0, andv,, tends  similar results hold for the system
to zero amn—oe. ,
For r=(u,v) e R?, with 0<—u<wv, we haveN(r,A) dx
=1.2p and 2+1 (p=1) for v>v,—(1+v,/W)u, v Gt V=X +Wo,y(t—A)),
=v,—(L+v,/W)u and vy —[1+(vps 1)/ Wlu<v<v, ®
—(1+v,/W)u, respectively.
The number of zeros of a solution informs us about the
TRD, because successive zeros cannot be arbitrarily close to

Un

dy
G (D="Y(O+Wo,x(t=A)),
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400 ———— T asymptotically stable equilibrium point of systd).

(iia) When aW>1, system(5) has three equilibrium
points denotedr;=(—a,—a), r,=(0,0), andrz=(a,a),
wherea is the unique strictly positive real number satisfying
a=Wo(a). The pointsr; andr 3 are locally asymptotically
stable, whiler, is unstable.

w ; (iib) The union of the basins of attraction of andrg
contains an open dense subset of the phase space.

(iic) The complement of the union of the basins of attrac-
tion of the two stable equilibria, denotét] is the boundary
separating the two basins.

(iid) B is a codimension-one locally Lipschitz manifold
% 5 0 15 20 25 30 3 0 2 30 containing the unstable equilibrium poirg=0 and its stable

v manifold. It divides the phase space into two regions in the

- same way a plane divides a three-dimensional space: Points
’ “below” and “above” B form the basins of attraction of;
andr g, respectively.
The above result shows that no matter what value the

delay A takes, most solutions of E@5) tend to an equilib-
e rium point. Those that are not convergent can only be con-
g tained in the narrow region forming the boundary separating
the basins of attraction of the two stable equilibria when
aW=>1. Therefore, the presence of delays does not alter the
asymptotic dynamics of most trajectories of Ef). How-
ever, foraW>1, due to the presence of attracting periodic
solutions of the difference system associated with &g,
10 12 transient oscillations appear. The increases in the TRD due
to the onset of these transient oscillations can be seen in Fig
3(c), for a fixed delay value, as the initial condition is

3
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50

10000
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=
transient regime duration (arbitrary units)

70

Z %0 1 changed, and the two dashed lines in Fi¢h)Jor a fixed

> b initial condition, as the delay is changed. The results are

fg" oF 1 similar to the case with the steplike input-output function.

£ 4oi: : They also show that the TRD increases more rapidly for
.- ; large «, the fastest increase being the one computed for the

3 ol step input output function.

E L One key aspect in our analysis was the description of the

L';f 20} _______________ . dynamics of the two-neuron network with piecewise constant

s [— input-output functions and delayed interactions by the itera-

g tof T tions of simple one-dimensional maps. Similar maps, albeit

. . ‘ . . of appropriate dimension, can be constructed for networks
% 2 4 6 8 10 12 composed oN units.

FIG. 3. Transient regime duratiofs) Transient regime durat Assumptions for the existence of transient oscillations are
- o ransient regime guratio ransientregime duration ., (i) the network with delay is almost convergent for all

for a delayA=4 for initial conditions (1,v) with u=—10"3, andv . . . . ;
ranging from 0.5 to 50. The inset shows a magnification of thedelays’ andii) the associated discrete time network displays

graph forv in [20,50. Abscissae: ordinate of the initial condition, an attra(.:tmg p_er'Od'C (_)rb't' I_-Et, us dgnote py,....px the
in arbitrary units; ordinates: transient regime duration in arbitrarySUCCESSIVe points of this periodic orbit. Egghbelongs to a

units. (b) Delay vs the transient regime duration for the initial con- 9iven orthant, denoted b;, of the N-dimensional space.
dition (u,v)=(—10"3,5), for stepwise(thick solid line and two  Transient oscillations arise when trajectories of the

smooth input-output functions with gaie= 50 (thick dashed ling ~ continuous-time system with delay follow for some time this
and =10 (thin dashed ling The thin solid line is the analytical Periodic orbit, and the construction of the map is based upon
lower bound(see text for details Abscissae: delay in arbitrary this property. This construction is schematically described in
units; ordinates: transient regime duration in logarithmic scale, irthe following.
arbitrary units.(c) Same as irA for smooth input-output functions Trajectories starting ifD; are segments of straight lines
with gainsa=50 (thick dashed lingand «=10 (thin dashed line  that connect the initial conditions t@;,; (where py,;
WeightW=3 in all figures. =p,). These trajectories leav®, through part of its bound-
ary that we denote b;. For example, for the two-neuron
where the input-output functions of the units are smoothnetwork we studied, there is a period-two orbit, wih
functionso ,(x) =tanh@x). The asymptotic dynamics of Eq. =(—W,W) and p,=(W,—W). The corresponding orthants
(5) has been described [B]. In the following, we remind the and boundaries are, respectively;={(u,v):u<0p >0},
results essential for our study. 0,={(u,v):u>0p <0}, and B;={(0p):v>0}U{(u,0):u
Theorem.(i) When 0<aW=1, the origin is a globally <0}, B,={(0p):v<0}U{(u,0):u>0}. EachB; can be
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partitioned into two subsets, denoted 6y andD;, where adjacent(ii) trajectories initiated in the boundaries separat-
trajectories starting ilC; enterO;, ; while those starting in ing O; from any neighboring orthant, except f@ . ;, enter
D; do not. In the case of the two-neuron network, we haveD;. This simplifies the construction of the map, even when
C1={(0p):0<v<vq}U{(u,0):—v,<u<0} and D;=B; interactions are delayed. Indeed, in this case, intermediate
—C,, while C; andD,, are defined in a similar way. We can break points do not occur along trajectories, nor do orthant
construct a magf; that associates a poiat in Bi.; to @  boundaries need to be subdivided. Furthermore, as we have
point z in C;, such that the trajectories of the two points shown through the study of a two-neuron network with de-
coincide ~ after some  appropriate  time.  This jayed negative feedbadl] satisfying the above conditions
(N—1)-dimensional map generalizes the one used for the7] they imply that, regardless of the fact that the network
analysis of_ the two-neuron network. Its construction follows,yithout delay is convergent or not, the introduction of delays
the Same I|r_1e. . ) _ leads tosustainedstable oscillations in such networks. Thus,
Trajectories starting i; enter0; , after possibly 9019 they are subject to delay-induced loss of stability and do not
through a number of other orthants. These translate into 8atisfy our first assumption for the existence of delay-
number of break points along the trajectory, before it joins §p,qy,ceq transient oscillations, namely, that delays be harm-
straight line leading top;., (i+2 taken modulok). The |ooq for the asymptotic dynamics.
point z' =f(2) is the_ in_tersection between this line and _the In conclusion, through our analytical study we have con-
boundaryB; ;. If 2" is in C;, 4, the process can be contin- fymeq the fact that, due to the presence of DITOs, the tran-
ued to obtain a point” in B; ., otherwise, it stops. There- gjent regime duration of neural networks increases exponen-
fore, in principle, it is possible to analyze the transient dy-tja|ly with the delay, even when the delay does not affect the
namics of anN-neuron network with delay through the asymptotic behavior of most trajectories. The DITOs are due
composition of appropriateN—1)-dimensional map$;, in g ‘the fact that the solutions of El) are transiently at-
the same way as for the two-neuron network. tracted by oscillating solutions of the associated difference
The above construction generalizes the ong6ih intro-  gystem(2). Thus, even though the asymptotic dynamics of a
duced for the study of s:ome.oscnlgtmg solutlons.of networkshetwork of GRCTNs is not affected by the delay, its infor-
composed of units with piecewise constant input-outpUiyation retrieval performance may deteriorate due to the DI-

functions with instantaneous transmission tifié8]. It can  10s that can cause a considerable lengthening of the tran-
be shown that the hypothesed 6] imply the existence of an  gjent regime duration.

attracting periodic orbip,...,py for the associated discrete-

time neural network, so that the corresponding Poinozap The authors were partially supported by USP—-COFECUB
is one special form of the map depicted in the previous paradnder Project No. U/C 9/94. C.P.M. and C.G.R. were also
graph. However, important conditions for the application ofpartially supported by CNP¢he Brazilian Research Coun-
the results in[6] are that(i) the orthantsO; and O;,,; be cil).
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